

Probiotics for Chronic Kidney Disease: The "RENADYL" story

Natarajan Ranganathan¹, Pari Ranganathan¹, Usha Vyas¹, Eli A Friedman².

¹Kibow Biotech Inc., Newtown Square ,PA 19073

²Downstate Medical Center, State University of New York(SUNY), Brooklyn, NY 11203

INTRODUCTION

Chronic Kidney Disease (CKD) is a growing health problem worldwide. CKD patients have high levels of inflammation with increased population of pathogenic gut bacteria and, their blood uremic toxins diffuse passively into the bowel. A novel probiotic supplement formulation was developed, after a decade of R&D, for the removal of several uremic toxins diffused and also generated by dysbiosis of the gut microbiome to restore CKD function. Our product 'RENADYL™' is thus targeted to help and restore/maintain kidney function in CKD patients.

OBJECTIVES

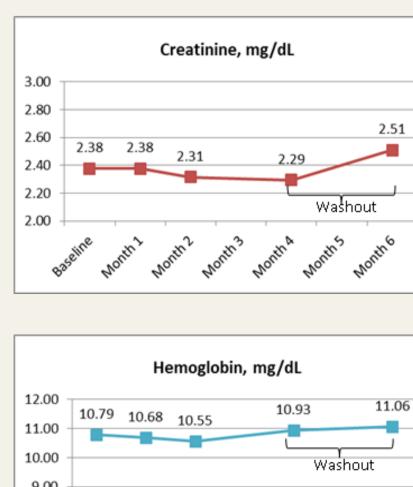
- 1. Gut dysbiosis and inflammation are related to various diseases including Chronic Kidney Disease¹.
- 2. Chronic Kidney Disease is accompanied by altered gut microbiome^{2,3}.
- 3. Some specific probiotic strains can remove uremic toxins, reduce inflammation and restore the gut microflora balance^{4,5}.

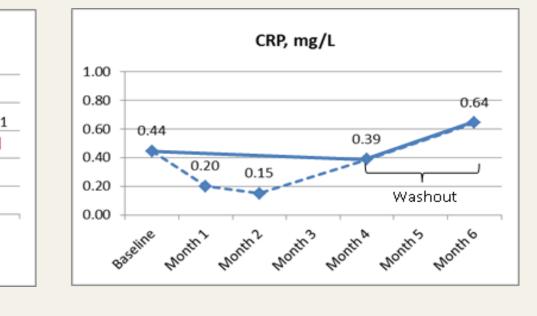
METHODS

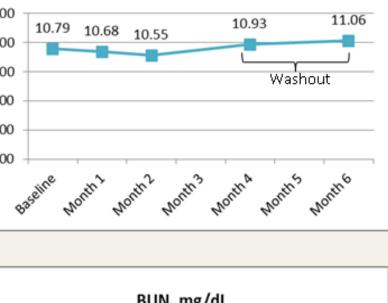
Earlier attempts to genetically engineer a microbe with various genes - urease, creatininase and uricase were technically difficult and unsuccessful. Secondly, the possible challenges from USFDA for use in highly immunocompromised CKD patients led us to drop this route, and opt for naturally occurring safe microbes possessing some uremic toxin catabolizing properties. Screening of 165 probiotics strains, selecting a dozen and enhancing their growth in uremic milieu led to strains which could metabolize uremic toxins. In vitro and simulated gut studies led to the formulation of the probiotic dietary supplement 'RENADYL™' having a blend of three strains of probiotic bacteria; S thermophilus (KB19), Lacidophilus (KB27) and B longum (KB31). 'RENADYL' has a pharmaceutical like validation with various animal trials^{6,7,8} and also human trials in CKD/Dialysis patients 9,10,11.

RESULTS-CLINICAL TRIAL 1

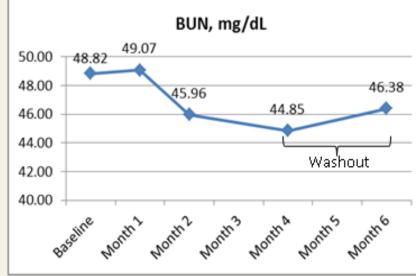
Parameter	No of Patients showing positive response	% of Patients showing positive response	p value
Blood Urea Nitrogen (BUN)	29	63	< 0.05
Creatinine (Crn)	20	43	Not statistically
Uric Acid	15	33	significant
Quality of Life	8	86	< 0.05

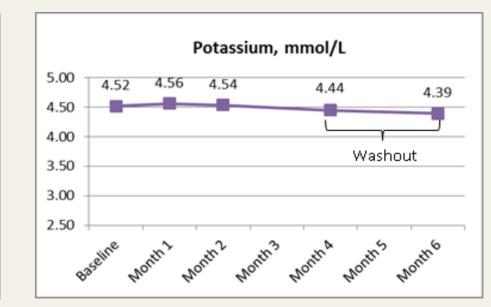

Multi center double blind placebo controlled crossover studies in CKD III and IV patients, for a 6 month period⁹.


USA- SUNY and NYU school of Medicine(n=10), Canada-University of Toronto, Scarborough Hospital Ontario (n=13), Nigeria-National Hospital Abuja (n=15), Argentina-Hospital Italiano Bueno Aires(n=8)


Dosage of 90 Billion CFU/day.

Reduction seen in levels of Urea, Uric acid and creatinine. Patients experienced improvement in their Quality of Life (QOL).


RESULTS-CLINICAL TRIAL 2



Open label dose escalation study in 28 patients for a period of 6 months at Thomas Jefferson University¹⁰.

Dosages of 90,180 and 270 Billion CFU/day.

There was a significant reduction in creatinine and C-reactive protein (CRP), an inflammatory biomarker. Reduction was also seen in urea and potassium. Improvement in quality of life (QOL) was also observed. No adverse effect was seen even with high doses of 270 billion CFU/day.

RESULTS-CLINICAL TRIAL 3

Variable	Tx period	N	Mean
	Base	22	6.36
White Blood Cells (WBC)	Placebo (PL)	21	6.07
	Treatment (Tx)	21	5.57
C-reactive protein (CRP)	Base	21	8.89
	Placebo (PL)	18	11.28
	Treatment (Tx)	19	5.1
Total Indoxyl Glucuronide (TIG)	Base	22	0.75
	Placebo (PL)	22	0.75
	Treatment (Tx)	22	0.67

Variable	Tx period	t value	Pr>lt l
White Blood Cells (WBC)	PL-Tx	2.03	0.0569
C-reactive protein (CRP)	PL-Tx	1.97	0.0707
Total Indoxyl Glucuronide (TIG)	PL-Tx	2.01	0.0579

Double blind placebo controlled crossover studies in 22 dialysis patients over a 6 month period at the State University of New York¹¹.

Dosage of 180 B CFU/day.

Results showed reduction in CRP, serum total Indoxyl glucuronide (IG) and improved QOL.

SUMMARY/CONCLUSIONS

Levels of urea, uric acid, creatinine, CRP, and the lesser known toxic metabolite (IG) arising from protein putrefaction due to gut dysbiosis in CKD, can be reduced using some specific probiotic strains with improved QOL. Use of genetically engineered probiotics will be daunting in terms of development costs and US FDA governmental regulations.

REFERENCES

1. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity Nosratola D Vaziri.

Curr Opin Nephrol Hypertens, 2012, 21(6): 587-592.

2. Chronic kidney disease alters intestinal microbial flora. Nosratola D. Vaziri, Jakk Wong, Madeleine Pahl et al.

Kidney International, 2013, 83: 308-315

3. Alterations of intestinal barrier and microbiota in chronic kidney disease. Alice Sabatino, Giuseppe Regolisti, Irene Brusasco *et al*.

Nephrol Dial Transplant, 2014, 0: 1-10

4. Clinical and experimental use of probiotic formulations for management of end-stage renal disease: an update. Alessandro Di Cerbo, Federica Pezzuto, Lucia Palmieri.

Int Urol Nephrol, 2013, 45:1569-1576

5. Pre-, Pro-, and Synbiotics: Do They Have a Role in Reducing Uremic Toxins? A Systematic Review and Meta-Analysis. Megan Rossi, David W Johnson et al.

International Journal of Nephrology, Volume 2012 (2012), Article ID 673631

6. Probiotic Amelioration of Azotemia in 5/6th nephrectomized Sprague-Dawley rats, Ranganathan, Natarajan; Patel, Beena; Ranganathan, Pari; Marczely, Joseph; Dheer, Rahul; Chordia, Tushar; Dunn, Stephen R.; Friedman, Eli A.

The Scientific World JOURNAL, 2005 (5), 652-660

7. In vitro and in vivo Assessment of Intraintestinal Bacteriotherapy in Chronic Kidney Disease. Natarajan Ranganathan; Beena G. Patel; Pari Ranganathan; Joseph Marczely; Rahul Dheer; Bohdan Pechenyak; Stephen R. Dunn; Willy Verstraete; Karel Decroos; Raj Mehta; Eli A. Friedman,

ASAIO Journal 2006,70-79

8. Probiotic Dietary Supplementation in Patients with Stage 3 and 4 Chronic Kidney Disease: A 6-month Pilot Scale Trial in Canada. N. Ranganathan, E.A. Friedman, P. Tam, V. Rao, P. Ranganathan, R. Dheer.

Current Medical Research and Opinion, 2009, 25(8):1919-1930.

9. Pilot Study of Probiotic Dietary Supplementation for Promoting Healthy Kidney Function in Patients with Chronic Kidney Disease. N. Ranganathan, P. Ranganathan, E.A. Friedman, A.Joseph, B.Delano, D.S. Goldfarb, P. Tam, A.V. Rao, E. Anteyi, C.G. Musso.

Advances in Therapy, 2010, 27(9): 634-647.

10. Dose Escalation, Safety and Impact of a Strain-Specific Probiotic (RENADYL™) on CKD Stages III and IV Patients. Natarajan Ranganathan, Pari Ranganathan, Usha Vyas, Bohdan Pechenyak, Stephanie DeLoach, Bonita Falkner, Alan Weinberg, Subodh J. Saggi and Eli A Friedman.

J Nephrol Ther 2013,3:141. doi: 10.4172/2161-0959.10001417.

11. Randomized Controlled Trial of Strain-Specific Probiotic Formulation (Renadyl) in Dialysis Patients. Ranganathan Natarajan, Bohdan Pechenyak, Usha Vyas, Pari Ranganathan, Alan Weinberg, Peter Liang, Mary C. Mallappallil, Allen J. Norin, Eli A. Friedman, and Subodh J. Saggi.

BioMed Research International Volume 2014, Article ID 568571

FUNDING AND RELATED INFORMATION

Partial funding for R&D and clinical trials were obtained from NIDDK-NIH, Bethesda, MD, USA and from USAID administered by ICICI Bank, Mumbai, India under the "Technology Development and Commercialization" assistance program. Identical poster presentations were also made for earlier exposure at the Harvard Medical School, Division of Nutrition, Probiotics symposium (Sep 2014) and at Diabetic Kidney Disease: Drug Discovery and Clinical Development Challenges held by the New York Academy of Sciences Dec 2014).