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The Kidney–Gut Axis: Implications for Nutrition Care
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There is increasing clinical evidence that patients with chronic kidney disease (CKD) have a distinctly dysbiotic intestinal bacterial com-

munity, termed the gut microbiota, which in turn drives a cascade of metabolic abnormalities, including uremic toxin production, inflam-

mation, and immunosuppression, that ultimately promotes progressive kidney failure and cardiovascular disease. As the gut microbiota

is intimately influenced by diet, the discovery of the kidney–gut axis has created new therapeutic opportunities for nutritional interven-

tion. This review discusses the metabolic pathways linking dysbiotic gut microbiota with adverse health outcomes in patients with CKD,

aswell as novel therapeutic strategies for targeting these pathways involving dietary protein, fiber, prebiotics, probiotics, and synbiotics.

These emerging nutritional interventionsmay ultimately lead to a paradigm shift in the conventional focus of dietarymanagement in CKD.

� 2015 by the National Kidney Foundation, Inc. All rights reserved.
Introduction

INTHE PAST 5 years there have been significant scienti-
fic developments linking gut health and several chronic

diseases,1 including kidney disease.2 Indeed, recent findings
have implicated the community of bacteria that reside in the
large bowel, termed the gut microbiota, as a key player in
the heightened risks of kidney failure progression and car-
diovascular disease observed in patients with chronic kidney
disease (CKD).3 The gut microbiota is not only highly
dependent on diet, but its plasticity makes it an attractive
therapeutic target for dietary manipulation.4 Therefore,
the emerging role of gut health in CKD, which has been
coined the ‘‘kidney–gut axis,’’ is of significant importance
to the dietetic community. The aim of this article is to
describe the link between diet, gut microbiota, and clinical
outcomes in CKD patients and then outline novel dietary
interventions in the area of gut health.

Diet and CKD: The Origins and Link to Gut
Health

A person’s risk for CKD is determined by both genetic
and environmental factors.5 The significant rise in the prev-
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alence of kidney disease within a single generation suggests a
dominant role of environment in promoting CKD. One of
the largest environmental factors a person is exposed to is
what they eat. However, until recently, our understanding
of the role of diet as an environmental risk factor has been
restricted to its effect on human metabolism, without due
consideration of its effect on intestinal bacterial metabolism
and ensuing consequences for human health. The recent dis-
covery of the gut microbiota’s metabolic potential, which
contains 100 times the genetic material of mammalian cells,6

has uncovered a new pathway in which the diet can impact
on health and disease (illustrated in Fig. 1). The implications
of this in CKD are significant, with a number of studies
demonstrating a distinct dysbiotic gutmicrobiota in this pop-
ulation.7,8 Moreover, dietary recommendations in CKD
may indirectly contribute to this dysbiosis, particularly in
patients prescribed oxalate- and potassium-restricted diets.9
Diet–Gut Interaction
Dietary constituents that are not absorbed in the small in-

testine are rapidly fermented by the colony of bacteria in
the large intestine. The twomain types of bacterial fermen-
tation are saccharolytic (carbohydrate) and proteolytic (pro-
tein). Saccharolytic is a more favorable type of fermentation
because of the beneficial metabolites that it forms,
including short chain fatty acids butyrate, propionate, and
acetate.10 These short chain fatty acids are not only integral
to the health of the colonic epithelium, but have amyriad of
other benefits, including anti-inflammatory properties.11

Proteolytic fermentation, on the other hand, is known to
be the source of a number of potentially toxic metabolites,
particularly the key nephrovascular uremic toxins, indoxyl
sulfate and p-cresyl sulfate.12 The relative amount of sac-
charolytic versus proteolytic fermentation that occurs in
the colon is intimately regulated by dietary nutrient avail-
ability, particularly the ratio of carbohydrate to nitrogen
(protein) and colonic transit time.13
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Figure 1. Two pathways in which diet can impact on disease.
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Dietary Fiber
Dietary fiber is a broad term encompassing carbohy-

drates that are indigestible by human alimentary enzymes.14

CODEX Alimentarius Commission recently adopted a
comprehensive definition of dietary fiber, categorizing
different types by their molecular weight and solubility
(Fig. 2). There are a number of well-established benefits
associated with dietary fiber, including reductions in total
cholesterol and postprandial blood glucose levels.15 Some
of these benefits overlap between different types of dietary
fiber, whereas others appear to be category specific. None-
theless, there is currently insufficient evidence to suggest
one type of fiber is superior to another and therefore the
concept of ‘‘all fiber fits’’ to achieve the Dietary Reference
Values is recommended.16

Dietary fiber may assume even greater importance in
CKD patients based on additional benefits with respect to
enhanced integrity of the gastrointestinal wall17 (which
Figure 2. Dietary fiber categories.
has been shown to be ‘‘leaky’’ in CKD18) and reduced sys-
temic levels of hazardous uremic toxins.19 Furthermore, an
analysis of 14,543 participants in the National Health and
Nutrition Examination Survey III demonstrated that in-
creases in dietary fiber intake were associated with statisti-
cally significant and clinically important reductions in
inflammation and mortality in people with kidney disease
and that these benefits were significantly more marked
than those observed in patients without kidney disease.20

Despite these findings, there is limited evidence from inter-
vention studies, which have led to weak dietary fiber rec-
ommendations in renal nutrition guidelines.9 There is,
therefore, a clear need for further research investigating
the role of dietary fiber in CKD. Additionally, there are a
number of other aspects that dietitians need to consider
when recommending dietary fiber in practice. These are
summarized in Table 1.

Dietary Protein
There are a number of factors that impact on the avail-

ability of protein in the colon leading to increased proteo-
lytic fermentation, including the efficiency of protein
assimilation in the small intestine and colonic transit time.
Protein assimilation in the small intestine is affected by pro-
tein load (amount), form (cooked or uncooked), and
source (animal or plant),21 as well as the presence of other
dietary constituents (eg, resistant starch).22 The impact of
these variables can be significant, with studies in the healthy
population demonstrating protein malabsorption of up to
35%.23 In the CKD population, protein assimilation is
known to be further impaired,24 with a range of mecha-
nisms thought to contribute, including acid suppression
therapy,25 gastroparesis, small-bowel bacterial overgrowth,
and pancreatic abnormalities.26

Increased colonic transit time is another common symp-
tom in patients with CKD, often secondary to patients’
medical treatment.27 Common factors likely to contribute
include fluid restriction, medication load (including phos-
phate binders), and dietary restriction, particularly of
higher fiber foods.
Targeting modifiable predictors of protein assimilation

and delayed colonic transit time, in order to lower proteo-
lytic fermentation, maybe a valuable, yet to date an under-
researched strategy to improve gut health in CKD.
Targeting the Gut in CKD
The concept of using the gastrointestinal tract to treat

kidney disease is not new in nephrology. The idea was first
conceived by a Roman physician, Pedanius Dioscorides,
over 2000 years ago as a means to eliminate toxin accumu-
lation in kidney disease.28 There have subsequently been a
number of attempts to use the gut in CKD, including
enteric intestinal dialysis,29 yet the therapies’ invasive nature
coupled with limited knowledge, has inhibited translation
in practice. It is only in recent years, with high throughput



Table 1. Points to Consider When Recommending Dietary Fiber in Practice

Points to Consider Implications for Practice

Fiber content of food can be high variable based on different

cooking and processing techniques (particularly in resistant
starch)

Should we be encouraging specific cooking and cooling

techniques?

Most countries’ nutrient composition tables are out dated where

dietary fiber estimates do not include important subcategories of

resistant starch and low molecular weight oligosaccharides43

Are we under estimating the fiber benefits of some foods?

The latest Codex definition recognizes all substances that behave

like fiber, regardless of how they are produced, should be

considered as important sources of dietary fiber if they show
physiological benefits

Fortification of food productswith dietary fibermay be an important

source for patients with chronic kidney disease who need to

restrict some naturally occurring sources, such as in the case of
hyperkalemia

Traditional ‘‘renal diets’’ are inherently lower in fiber based on

potassium and oxalate restrictions

It is important to ensure patients are still receiving adequate dietary

fiber when prescribing potassium- and oxalate-restricted diets
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technologies providing a better understanding of the meta-
bolic potential of the gut microbiota, that therapies target-
ing the gut are being revived in CKD.
There have been a number of drug therapies proposed to

modify gut microbial metabolism, including alpha glucosi-
dase inhibitors30 and antibiotics,31 however, diet-based in-
terventions, given their typical innocuous nature, maybe a
more attractive target.
Pre- and Probiotics in CKD
Prebiotics, the ‘‘indigestible’’ carbohydrates that stimu-

late bacteria, and probiotics, the live beneficial bacteria
(such as Bifidobacterium), have been consumed as part of
the diet of many cultures for thousands of years.32 These
naturally occurring components in health-promoting
foods, described in Table 2, have more recently been culti-
vated by industry and are now widely available as commer-
cial supplements and are in many fortified foods. A
comprehensive product update on probiotics was recently
provided by Zirker.33
Table 2. Naturally Occurring Sources of Pre- and Probiotics

Probiotic
‘‘Live microorganisms which when administered in

adequate amounts confer a health benefit on the

host’’44

Food Source Predominant Type*

Yogurts (fermented

milk product)

Started cultures Lactobacillus bulgararicus and

Streptococcus thermophilus46

Kefir (fermented milk

beverage)

Lactobacillus and Lactococcus genera, and yea

Kombucha (tea) Gluconacetobacter, Lactobacillus and

Zygosaccharomyces (yeast)49

Kimchi and

Sauerkraut

Leuconostoc, Lactobacillus, Pediococcus and

Streptococcus genera51

Natto (fermented

soy beans)

Bacillus subtilis specie52

FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharide.

*The bacterial profile can differ depending on varieties, raw materials us
Characterization of the dysbiotic gutmicrobiota in CKD
provides a mechanistically sound rationale for the potential
benefit of pre- and probiotics to re-establish microbial bal-
ance. There is a growing body of supportive evidence sur-
rounding this therapy for targeting a wide range of
common disturbances in CKD.34 A summary of the poten-
tial benefits of pre- and/or probiotic supplementation, as
well as their hypothesized mechanisms of action, is listed
in Table 3. Extrapolation of findings from non-CKD clin-
ical trials also suggest a number of other potential benefits
for this therapy relevant in CKD such as blood glucose con-
trol,35 hypertension,36 weight management,37 and urinary
tract infections.38

Given the infancy of this area of research most of the
proof-of-concept studies have relied on commercial sup-
plements to provide precise and high dose quantities of
pre- and probiotics. However, one of the fundamental
principles of dietetic practice is to recommended nutrients
from food sources as first line therapy, and it is only when
this fails that supplements are used. This concept may also
Prebiotics

‘‘A selectively fermented ingredient that allows specific
changes, both in the composition and/or activity in the

gastrointestinal microflora that confers benefits upon

host wellbeing and health’’45

Food Source
Predominant

Type

Asparagus Inulin47

st48 Rye bread Inulin47

Canned beans GOS50

Lentils GOS50

Nectarines FOS53

ed, process, fermentation, and preservation methods.



Table 3. Target Treatment and Proposed Mechanisms of
Pre- and/or Probioic Supplementation in Patients with
Established Chronic Kidney Disease

Observed Benefit Proposed Mechanisms

Y Fecal vancomycin-

resistant enterococci54
- Competitive colonization

- Antimicrobial production

Y Colonic pH

[ Serum folate55 [ Bacterial production of
folate

Y Serum uremic toxins

- Urea56

- Uric acid57

- Indoxyl sulfate58

- p-Cresyl sulfate59

- Di-methylamine60

- [ Microbial metabolism

- Competitive colonization
- Antimicrobial production

- Y Colonic pH

- Y Colonic transit time

- Y Availability of substrate
Y Serum phosphate61 YColonic pH [ the ionization

of Ca which bind with

intestinal phosphorus ions

as an intrinsic binder
Y Serum triglycerides55 [ Bacterial production of

nicotinic acid

Y Serum homocysteine55 [ Bacterial production of B
vitamins

[ Quality of life62 Y Symptoms of uremia

Y Urinary oxalate63 [ Microbial metabolism of

oxalate
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translate to pre- and probiotics with support for the bene-
fits of naturally occurring probiotics in animal models
demonstrating foods such as kefir,39 koumiss, and
yoghurt39,40 were able to improve renal injury. However,
whether this translates in vivo is the source of ongoing
debate with conflicting studies suggesting foods sources
of probiotics are less effective when compared to
commercial probiotic capsules based on their bile and
acid resistance.41,42

Despite the growing interest and potential in CKD for
pre- and probiotics (both commercial and natural sources),
this area of research is in its infancy and further high quality
clinical trials are needed before translation can occur.

Practical Application
There is evolving evidence implicating diet and its

impact on colonic bacterial metabolism in the heightened
risks of kidney failure progression and cardiovascular dis-
ease in CKD patients. This article presented a number of
emerging concepts linking the diet and gut microbiota
dysbiosis in CKD, with suggestions for how this may
impact future clinical practice and ultimately lead to a
paradigm shift in the focus of dietary advice in CKD,
particularly with respect to fiber, protein, and pre-/
probiotics.
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